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Abstract

We consider band-limited frequency domain goodness-of-fit testing for stationary time series,

without smoothing or tapering the periodogram, while taking into account the effects of pa-

rameter uncertainty (from maximum likelihood estimation). We are principally interested in

modeling short econometric time series, typically with 100 to 150 observations, for which data-

driven bandwidth selection procedures for kernel-smoothed spectral density estimates are un-

likely to have adequate levels. Our mathematical results take parameter uncertainty directly

into account, allowing us to obtain adequate level properties at small sample sizes. The main

theorems provide very general results involving joint normality for linear functionals of powers

of the periodogram, while accounting for parameter uncertainty, which can be used to deter-

mine the level and power of a wide array of statistics. We discuss several applications, such as

spectral peak testing and testing for the inclusion of an Unobserved Component, and illustrate

our methods on a time series from the Energy Information Administration.
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1 Introduction

There is an abundance of literature on time domain methods for detecting model misspecification
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for model goodness-of-fit (gof) in the frequency domain, namely by comparing a postulated model

spectral density (perhaps the maximum likelihood estimate from a particular model class) with

some non-model-based spectral estimate, over a suitable range of frequencies. For example, there

is the likelihood-ratio test in the form of a Whittle likelihood (see Taniguchi and Kakizawa [23]).

Also, general frequency domain gof tests have been proposed by Paparoditis [18, 19] and Chen and

Deo [5], though these gof tests are not limited to a specific frequency band. The work of Beran [1]

and Eichler [8, 9] generalize such gof tests to limited frequency bands, and the latter also considers

multivariate modeling. Eichler [9] uses kernel-smoothed and/or tapered periodogram estimates for

the spectral density, and it is shown that the parameter uncertainty (say of maximum likelihood

estimates) does not affect the asymptotic results for the test statistics.

In this paper we consider band-limited gof testing without smoothing/tapering the periodogram,

and we determine the asymptotic effects of parameter uncertainty. Because the applications that

we consider (such as the identification of seasonality) involve short economic time series, typically

with 100 to 150 observations, we wish to develop diagnostics that do not depend on a bandwidth

that grows with sample size. Although the bandwidth selection problem involved with smoothing

the periodogram can be adequately handled through data-driven algorithms, simulations indicate

that large samples (1000 or more observations for the global iterative procedure (ITP) used by

Eichler [9] – see Table 2 therein) are typically needed to achieve reasonable levels. Since our

bandwidths are essentially held fixed, we must take into account the effect of parameter uncertainty

on our asymptotic results. We derive mathematical results that take this parameter uncertainty

directly into account, and this allows us to obtain reasonable level properties at small sample sizes.

Interestingly, parameter uncertainty decreases the overall variability in the test statistic (see Remark

1 below and also McElroy [16]). We next discuss some of the applications of our band-limited gof

test.

McElroy and Holan [17] discuss the problem of spectral peak detection, with applications to cycle

estimation in econometrics and seasonal adjustment in federal statistics; also see Priestley [21] for

background on this subject. If a postulated model fails to adequately capture a prominent spectral

peak really present in the data, then certain stochastic periodic phenomena will be completely

absent from our model, resulting in a loss of the model’s explanatory power. Moreover, such

inadequate models will tend to produce flawed seasonal adjustments, since the model-based filters

will be faulty (see McElroy [16] for a discussion).

More generally, we may be interested in whether a model fits the data at hand with respect to

a particular range of frequencies. The Gaussian maximum-likelihood algorithm involves finding a

model spectral density for the data such that it is close to the periodogram in an average sense,

in that the Kullback-Leibler discrepancy is computed by aggregating over all frequencies. Thus,

maximum likelihood estimates can be expected to provide an adequate model in a global sense.

In contrast, a band-limited diagnostic test can be constructed so as to focus on a narrower band
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of frequencies (this strategy is also considered in Eichler [9]). For example, if we are interested in

estimating or forecasting an ambient signal, such as a trend or seasonal component, then attention is

naturally focused upon the band of frequencies where most of the signal’s spectral mass is located

(e.g., low frequencies for trend). Then one could consider a gof test focused on the pertinent

frequency band.

In the basic Unobserved Component (UC) model – see Harvey [10] – each component of eco-

nomic phenomenon (e.g., trend, cycle, seasonal) is modelled as a separate time series, and the sum

of all components yields the observed process. Given the usual issues of parsimony in statistical

modelling, one is interested in knowing whether the addition of another UC is compelling with re-

spect to the data. A time domain method of answering this question, which enjoys some popularity,

is to determine if the variance of the innovation sequence of an ARIMA representation of a given

component differs significantly from zero. In contrast, a frequency domain perspective examines

the spectral density of the postulated component model at a range of frequencies, and determines

whether the data prefers a model that includes that particular component.

The band-limited gof statistic that we consider here is very similar to the statistic of Paparoditis

[18], the difference being that we don’t kernel-smooth the periodogram – and we also consider fixed

frequency bands (also our work is encompassed by the general results of Eichler [9], only we don’t

smooth or taper). Because the bandwidth is not allowed to increase with sample size, our methods

must take parameter uncertainty into account. Theorem 1 provides a very general mathematical

result involving joint normality for linear functionals of powers of the periodogram; Theorem 2

extends this result by taking parameter uncertainty into account. These two results can be used

to determine the level and power of a wide array of statistics, and thus may be of general interest

to a much wider audience.

The paper is organized as follows. In Section 2 we develop our notation and state our general

mathematical results (Theorems 1 and 2). Section 3 specializes these results to the quadratic band-

limited gof test statistic that we consider in this paper and gives several of the applications discussed

above – peak testing, gof testing, and UC testing. Section 4 provides the results of a simulation

study, which show the efficacy of these methods in practice. We also provide an illustration of

our methodology, to the application of peak-testing, using a series from the Energy Information

Administration. Finally, Section 5 concludes. All proofs are left to the Appendix, which also

contains some notes for straight forward computer implementation of the proposed diagnostic.

2 Notation and General Results

Suppose that, after suitable transformations if necessary (and removal of regression effects), we

have a mean zero stationary time series X1, X2, · · · , Xn, which will sometimes be denoted by the

vector X = (X1, X2, · · · , Xn)′. If the original data is homogeneously nonstationary, we suppose
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that a differencing operator δ(B) has already been applied to reduce the data to stationarity. The

spectral density f(λ) is well-defined so long as the autocovariance function is absolutely summable.

More generally, for any bounded non-negative function f , let {γf (h)}h∈Z denote its inverse Fourier

Transform:

f(λ) =
∞∑

h=−∞
γf (h)e−ihλ

γf (h) =
1
2π

∫ π

−π
f(λ)eihλ dλ

with i =
√−1 and λ ∈ [−π, π] (this definition provides our convention with the 2π factor, which

differs from some authors). Finally, let I(λ) denote the periodogram:

I(λ) =
1
n

∣∣∣∣∣
n∑

t=1

Xte
−itλ

∣∣∣∣∣
2

=
n−1∑

h=1−n

R(h)e−ihλ λ ∈ [−π, π],

with R(h) equal to the sample (uncentered) autocovariance function.

In this section we consider the asymptotic properties for statistics Qn(f, g, θ) of the form

Qn(f, g, θ) =
1
n

∑

λ

gθ(λ)f j(λ),

where gθ is some weighting function dependent on a parameter vector θ, and j ≥ 1 is an integer

power of the spectral density. The sum is over the Fourier frequencies in (−π, π) \ {0}; note that

when j = 1, the sum is asymptotically equivalent to the integral representation

1
2π

∫ π

−π
gθ(λ)f(λ) dλ.

However, this approximation to the sum is not valid when j > 1 and f is the periodogram (Chen

and Deo [4]). Typically some estimate f̂ of the spectrum f is substituted, and gθ is determined by

the practitioner – although θ is not known and an estimate θ̂ is substituted for it. In this paper

we only consider f̂ = I, the periodogram, although other works consider kernel-smoothed and/or

tapered periodograms as spectral estimates (Paparoditis [18, 19] and Eichler [8, 9]). These latter

types of estimates can provide a faster rate of convergence of Qn to its asymptotic distribution,

although the sampling distribution will typically be quite sensitive to the choice of bandwidth

(Eichler [8, 9]).

For motivation, we briefly describe the gof test statistic of this paper (further discussion is given

in Section 3), denoted by ψA:

1
n

∑

λ

A(λ)
(

I(λ)
fθ̂(λ)

− 1
)2

=
1
n

∑

λ

A(λ)
I2(λ)
f2

θ̂
(λ)

− 2
n

∑

λ

A(λ)
I(λ)
fθ̂(λ)

+
1
n

∑

λ

A(λ). (1)

Here A is a non-negative function that may correspond to a band-limited function such as 1[−a,a]

for 0 < a < π. Such a statistic, intuitively speaking, should be approximately zero if the model is
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correctly specified (and conversely, if it is asymptotically zero, then the model is correctly specified

on the support of A). This statistic is equal to

Qn(I2, A/f2
θ , θ̂)− 2Qn(I,A/fθ, θ̂) +

1
n

∑

λ

A(λ).

Hence it is needful to consider joint asymptotics involving functionals of different powers of the

periodogram.

Note that the dependence of Qn on θ̂ has a nontrivial effect on the asymptotics. Indeed, if we

fix θ at some deterministic quantity, the asymptotics are much simpler to derive. The methods of

Eichler [9] achieve a higher rate of convergence for his gof statistics, and hence the
√

n-order error

induced by θ̂ − θ̃ (where θ̃ is the parameter value) becomes asymptotically negligible. However, in

our case the parameter uncertainty has a substantial effect on the asymptotics. Hence we seek to

derive the exact asymptotics for such statistics, taking parameter uncertainty into account, while

providing a consistent estimate of the variance as well.

In order to proceed, we first establish some further notation. Consider a set J of L integers

written as J = {j1, j2, · · · , jL}. These positive integers are the various powers of the periodogram to

be considered. The ith Qn statistic then has the form Qn(Iji , gi, θ̂), where gi = gθ,i is a user-defined

function which in general depends on the parameter vector θ. We consider the joint asymptotics

of these statistics under some assumptions on the gi, the time series {Xt}, the parameter space Θ,

the estimate θ̂, and the model class {fθ}θ∈Θ. Generally, we have a family F = {fθ}θ∈Θ of spectral

densities that parameterize the second-order properties of the time series.

Pseudo-true values minimize a certain distance from the model class to the true spectral density.

Consider the following Kullback-Leibler distance function, which corresponds to a quasi-Gaussian

likelihood (or Whittle likelihood) – see Dahlhaus and Wefelmeyer [7]:

D(k, h) =
1
2π

∫ π

−π

(
log k(λ) +

h(λ)
k(λ)

)
dλ.

Typically, the function k is drawn from a parametric family of spectral densities parameterized by θ,

i.e., some class F . Note that the Quasi-Maximum Likelihood (QML) estimate θ̂ is the minimizer of

D(fθ, I) with respect to θ ∈ Θ, where Θ denote the parameter space. If the model is mis-specified,

then θ̃ is defined to be the minimizer of D(fθ, f̃) over θ ∈ Θ. Here f̃ denotes the true spectral

density. So in this framework, we have

H0 : f̃ ∈ F
Ha : f̃ 6∈ F .

Note that if θ̃ is the unique minimizer, then H0 implies f̃ = fθ̃ (this is condition 6 below). We will

also consider the following set of additional assumptions:

1. {Xt} is mean zero and strictly stationary.
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2. {Xt} is Gaussian.

3. {Xt} satisfies the Brillinger conditions described in Taniguchi and Kakizawa [23], p.55.

4. The fourth order cumulants of {Xt} are zero (see Taniguchi and Kakizawa [23], p.54 for a

definition).

5. Θ is compact and convex.

6. θ̃, the pseudo-true value of the parameter, exists uniquely and lies in the interior of Θ.

7. The spectral density fθ(λ) is twice continuously differentiable in θ and is continuous in λ.

8. The weighting functions gθ,i(λ) is twice continuously differentiable in θ and is continuous in

λ.

9. The matrix Mf (θ), which is by definition the Hessian of the Kullback-Leibler discrepancy

between fθ and f̃ , is nonsingular at θ = θ̃.

10. The derivatives of the spectral density are uniformly bounded (in λ) and bounded away from

zero.

Most of these conditions are natural and are easily satisfied, though condition 5 assumes the com-

pactness of the parameter space, which would typically include the innovation variance (although

from a theoretical standpoint this makes little sense, in practice it matters little). We also note

that condition 2 implies conditions 3 and 4.

We utilize the notation ∇θ and Hθ for the gradient and Hessian matrix operators, which operate

on a scalar function of the parameter vector θ. Our starting point is the following joint asymptotic

normality result for the fixed parameter case:

Theorem 1 Under conditions 1, 3, and 8, for any θ ∈ Θ
{√

n
(
Qn(Iji , gi, θ)− ji!Qn(f̃ ji , gi, θ)

)}L

i=1

L=⇒ N (0, V (θ)) (2)

as n →∞, with V (θ) an L× L variance matrix with klth entry

Vkl(θ) =
(jk + jl)!− jk!jl!

4π

∫ π

−π
(gθ,k(λ)gθ,l(−λ) + gθ,l(λ)gθ,k(−λ) + 2gθ,k(λ)gθ,l(λ)) f̃ jk+jl(λ) dλ

+
jkjk!jljl!
2(2π)2

∫ π

−π

∫ π

−π
(gθ,k(λ)gθ,l(ω) + gθ,l(λ)gθ,k(ω))GX(λ,−λ, ω)f̃ jk−1(λ)f̃ jl−1(ω) dλdω.

Note that this result is true whether or not H0 is true and clearly provides a generalization

to Theorem 3 of Chiu [6]. The mean term in (2) is ji!Qn(f̃ ji , gi, θ), which under H0 is equal to

ji!Qn(f ji

θ̃
, gi, θ). This can be estimated by substituting θ̂ for θ̃. Then evaluating at θ = θ̂ yields the

centered test statistic √
n

(
Qn(Iji , gi, θ̂)− ji!Qn(f ji

θ̂
, gi, θ̂)

)
.
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The following theorem gives the asymptotics of this centered test statistic. Under H0 we have

f̃ = fθ̃ and the asymptotic bias in (3) (below) goes away, but under Ha this quantity determines

the power of the test.

Theorem 2 Under conditions 1, 2, 5, 6, 7, 8, and 9 with θ̂ the QML (if θ̂ is the MLE, also assume

condition 10), we have

{√n
(
Qn(Iji , gi, θ̂)− ji!Qn(f ji

θ̂
, gi, θ̂)

)
+
√

n
ji!
2π

∫ π

−π
gθ̃,i(λ)(f ji

θ̃
(λ)− f̃ ji(λ)) dλ}L

i=1 (3)

L=⇒ N (0,W (θ̃))

as n →∞, with W (θ) an L× L variance matrix with klth entry

Wkl(θ) =
(jk + jl)!− jk!jl!

4π

∫ π

−π
(gθ,k(λ)gθ,l(−λ) + gθ,l(λ)gθ,k(−λ) + 2gθ,k(λ)gθ,l(λ)) f̃ jk+jl(λ) dλ

+
(jk + 1)!− jk!

4π

∫ π

−π
(gθ,k(λ)pθ,l(−λ) + pθ,l(λ)gθ,k(−λ) + 2gθ,k(λ)pθ,l(λ)) f̃ jk+1(λ) dλ

+
(jl + 1)!− jl!

4π

∫ π

−π
(gθ,l(λ)pθ,k(−λ) + pθ,k(λ)gθ,l(−λ) + 2pθ,k(λ)gθ,l(λ)) f̃ jl+1(λ) dλ

+
1
4π

∫ π

−π
(pθ,k(λ)pθ,l(−λ) + pθ,l(λ)pθ,k(−λ) + 2pθ,k(λ)pθ,l(λ)) f̃2(λ) dλ.

These entries are defined in terms of the following quantities:

pθ,i(λ) = −ji!f−2
θ (λ)b′i(θ)M

−1
f (θ)∇θfθ(λ)

bi(θ) =
1
2π

∫ π

−π
(f̃ ji(λ)− f ji

θ (λ))∇θgθ,i(λ) + jigθ,i(λ)f ji−1
θ (λ)∇θfθ(λ) dλ

Mf (θ) = ∇θ∇′θD(fθ, f̃).

When all the gθ,i functions are even and H0 holds, the variance formulas simplify to

Wkl(θ) =
(jk + jl)!− jk!jl!

π

∫ π

−π
rθ,k(λ)rθ,l(λ) dλ− 2jk!jl!b′k(θ)M

−1
f (θ)bl(θ)

hθ(λ) = ∇θ log fθ(λ) =
∇θfθ(λ)
fθ(λ)

rθ,i(λ) = gθ,i(λ)f ji

θ (λ).

Remark 1 The variance of the kth component of (3) is given by Wkk, which is equal to π−1((2jk)!−
jk!2)

∫ π
−π r2

θ,k(λ) dλ − 2jk!2z(θ), where z(θ) is the quadratic form b′(θ)M−1
f (θ)b(θ). Since M−1

f (θ)

is non-negative definite under H0 (see Appendix A.2) and parameter uncertainty only affects Wkk

through b(θ), we see that the variance is decreased by estimating parameters (when all parameters

are held fixed, b(θ) = 0 and we reduce to Theorem 1). The results in McElroy [16] treat the case

that all parameters are held fixed except for the innovation variance, which is estimated.
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Some implications of the various conditions are discussed in the proof. The formula for the

asymptotic variance is fairly complicated, but note that when the parameters are all fixed, each

pi function is identically zero and the result just reduces to Theorem 1. In practice, we wish to

estimate W (θ̃) via plugging in θ̂, so that we get the correct size for our test statistic under H0. Let

us first re-express the formula for Mf (θ):

[Mf (θ)]kl =
1
2π

∫ π

−π

∂2

∂θk∂θl
fθ(λ) · f−1

θ (λ)− ∂

∂θk
fθ(λ) · ∂

∂θl
fθ(λ) · f−2

θ (λ)

− ∂2

∂θk∂θl
fθ(λ) · f−2

θ (λ) · f̃(λ) + 2
∂

∂θk
fθ(λ) · ∂

∂θl
fθ(λ) · f−3

θ (λ) · f̃(λ) dλ

[
Mf (θ̃)

]
kl
|H0 =

1
2π

∫ π

−π

∂

∂θk
fθ̃(λ) · ∂

∂θl
fθ̃(λ) · f−2

θ̃
(λ) dλ.

Therefore, under H0, the formula simplifies greatly; so define the Fisher information matrix by

Mf,H0(θ) =
1
2π

∫ π

−π
∇θfθ(λ)∇′θfθ(λ)f−2

θ (λ) dλ.

Further, we can re-express the formula for W (θ) with Mf,H0(θ) in place of Mf (θ), so long as H0 is

true – this makes no difference in the value of W (θ̃), although W (θ) is altered in general. Call this

new variance matrix W 0(θ). Lastly, we can form the estimate W 0(θ̂), which is shown below to be

consistent for W (θ̃) under H0.

Proposition 1 Suppose H0 is true, and define W 0(θ) as noted above. Then under conditions 5,

6, 7, 8, and 9 (for the QML; for the MLE, also assume condition 10)

W 0(θ̂) P−→ W (θ̃)

as n →∞, in the sense that each matrix entry converges in probability.

Remark 2 As a result, we can compute the variance estimate with only a knowledge of the first

derivatives of fθ. Procedurally, we first compute ∇θfθ(λ) (analytically, if possible), and hence

obtain Mf,H0(θ̂), bi(θ̂), and pθ̂,i(λ). Then we can compute the entries of WH0(θ̂), using numerical

integration if necessary.

Thus a standardized test statistic in general will be some linear combination (given by constants

βi) of the various Qn:

Tn =
√

n

∑
i βiQn(Iji , gi, θ̂)−

∑
i βiji!Qn(f ji

θ̂
, gi, θ̂)√∑

i,k βiβkW
0
ik(θ̂)

. (4)

Under H0 and the listed assumptions, this statistic is asymptotically standard normal by Theorem

2 and Proposition 1. Under Ha, the asymptotics are dominated by the quantity

1
2π

∫ π

−π
gθ̃,i(λ)(f ji

θ̃
(λ)− f̃ ji(λ)) dλ, (5)
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which determines the power of the test. Large discrepancies between fθ̃ and f̃ in the support of gθ̃

will increase the asymptotic power; but if the above integral is zero, then there will be little or no

power to the procedure. These ideas are further developed in Section 3.

Finally, we note that sometimes the finite-sample properties of our standardized test statistic

(4) are inadequate, in that the sampling distribution displays skewness and non-normality (we have

observed this in samples of up to n = 1000). However, in our experience a logarithmic variance-

stabilizing transform has proved beneficial. Letting µ =
∑

i βiji!Qn(f ji

θ̂
, gi, θ̂), we have

√
n

log
(∑

i βiQn(Iji , gi, θ̂) + ε
)
− log(µ + ε)

√∑
i,k βiβkW

0
ik(θ̂)/(µ + ε)2

,

where ε is any deterministic constant that ensures the arguments of the log function are positive.

The above quantity asymptotically normal by the delta method (Bickel and Doksum [2]).

3 The Goodness-of-Fit Statistic ψA

First we consider the statistic ψA(I, fθ̂) given by (1). For quadratic statistics (L = 2 and j1 = 2,

j2 = 1), using (5) we see that asymptotic power is determined by

1
2π

∫ π

−π

2∑

i=1

βiji!gθ̃,i(λ)(f ji

θ̃
(λ)− f̃ ji(λ)) dλ. (6)

For the ψA statistic in particular, the band functions are gθ,i = A/f ji

θ and β1 = 1 and β2 = −2; so

(6) yields
1
π

∫ π

−π
A(λ)

f̃(λ)
fθ̃(λ)

(
1− f̃(λ)

fθ̃(λ)

)
dλ,

which could be zero for some alternatives. Note that a quadratic statistic with non-zero asymptotic

power is given by letting β1 = 1/2, β2 = −2 instead; then we obtain

− 1
2π

∫ π

−π
A(λ)

(
1− f̃(λ)

fθ̃(λ)

)2

dλ ≤ 0,

with equality only if fθ̃ = f̃ on the support of A. This quadratic statistic can therefore be expected

to have superior power against a wide class of alternatives. However, we will focus on ψA as defined

by (1), since this is a more intuitive formulation (and is consistent with the prior work of Paparoditis

[18]). This can also be written as

ψA(I, fθ̂) = Qn(I2, A/f2
θ , θ̂)− 2Qn(I, A/fθ, θ̂) + γA(0). (7)

The asymptotic mean works out to be γA(0), while the variance estimate is W 0
11(θ̂) − 4W 0

12(θ̂) +

4W 0
22(θ̂), so by (4) our normalized test statistic is

√
n

Qn(I2, A/f2
θ , θ̂)− 2Qn(I, A/fθ, θ̂)√

W 0
11(θ̂)− 4W 0

12(θ̂) + 4W 0
22(θ̂)

.
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We next discuss some of the properties of ψA (such as power and level) as well as potential appli-

cations.

The use of band-limited A can produce higher power in certain situations. Suppose that A is

the indicator function on an interval of length δ < 2π. Then (6) yields

1
2π

∫ π

−π
A(λ)

(
1− f̃(λ)

fθ̃(λ)

)2

dλ =
1
2π

∫ π

−π

(
1− f̃(λ)

fθ̃(λ)

)2

dλ

if fθ̃ = f̃ outside the support of A. Disregarding the effect of parameter uncertainty on the variance

for simplicity, we find that the asymptotic variance is 16γA2(0). In analogy with the efficacy of the

test (Taniguchi, Puri, and Kondo [24]), we can form a measure related to the asymptotic relative

efficiency of Pitman [20] by taking (6) divided by the asymptotic standard deviation, and take

the ratio of such quantities for two tests. Then the ratio for the identity kernel compared to the

kernel A yields
√

γA2(0) =
√

δ/2π which is less than one. This heuristic argument indicates, in

this specialized situation, that taking a band-limited statistic can be more powerful against certain

kinds of alternatives. (See Eichler [9] for a related discussion.)

We next illustrate the use of logarithmic variance-stabilizing transforms. Now (7) can be re-

written as n−1
∑

λ A(λ)(I(λ)/fθ̂(λ)− 1)2, which is positive. Therefore letting ε = 0 and µ = γA(0)

in the variance-stabilizing method of Section 2, we see that

√
n

log
(
Qn(I2, A/f2

θ , θ̂)− 2Qn(I,A/fθ, θ̂) + 2γA(0)
)
− log(γA(0))

√(
W 0

11(θ̂)− 4W 0
12(θ̂) + 4W 0

22(θ̂)
)

/γA(0)2
(8)

is asymptotically normal. These modified statistics are just as easy to compute, but tend to have

improved symmetry in smaller samples.

We next discuss several applications of the ψA statistic mentioned in the Introduction: peak

detection, band-limited gof testing, and UC testing. We first consider the situation where it is

suspected that certain stochastic periodic phenomena are present in the data, and it is desired

to detect the significance of such phenomena. For example, an evolving seasonal pattern may be

present in the time series, which manifests itself as peaks in the spectral density of the process at

the so-called “seasonal frequencies”. These are π/6, 2π/6, 3π/6, 4π/6, 5π/6, and 6π/6 for monthly

data. Another example comes from econometrics, where much interest focuses on detection of a

business cycle in macro-economic series. A business cycle represents the slowly moving (stationary)

oscillations about a smooth trend, and is commonly thought to have a period between 4 and 10

years for most series (Harvey and Trimbur [11]). Again, the presence of a cycle would be manifested

as a peak in the corresponding frequency range of the spectral density.

Suppose that we wish to perform local peak detection; we say a peak is detected if a postulated

model fθ that includes a salient peak cannot be rejected. A very simple model is given by the
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following AR(2):

(1− 2ρ cosωB + ρ2B2)Xt = εt, (9)

where εt is a white noise sequence with variance τ2. The frequency ω parameterizes the location

(maximizer) of the peak, which is at cos−1(cosω(1+ ρ2)/2ρ); this quantity is close to ω if ρ is close

to unity, so for simplicity we will call ω the “peak location” parameter. The parameter ρ governs

the overall shape of the curve, with ρ = 1 corresponding to the limiting case of an infinite peak.

The corresponding spectral density is

fθ(λ) =
τ2

(1− 2ρ cos(λ + ω) + ρ2)(1− 2ρ cos(λ− ω) + ρ2)
, (10)

with parameter vector θ′ = (ω, ρ, τ2). To construct the ψA statistic, one could use the kernel

1 + cosλ, appropriately centered at frequencies of interest (see McElroy and Holan [17] for more

discussion of specific kernels). For example, we might be interested in detecting seasonal peaks in

seasonally adjusted data, in which case the data typically requires at least one trend difference.

So we would difference the data, select a kernel with support centered on a particular seasonal

frequency (testing one seasonal peak at a time), and perform the test using (8) and the null model

fθ given by (10). Alternatively, perhaps we are interested in detecting a business cycle in raw data;

typically the data will require trend differencing, and we follow the same procedure except that

now the peak will be located in the low frequency band rather than at a seasonal frequency.

This approach can be generalized to band-limited gof testing by taking kernels A of a more

general shape. For example, suppose A consists of several modes, one centered at each spectral

region of interest. For monthly data, one could test the fit of a seasonal model by using the kernel

1 + cos(12λ), which has modes at all six seasonal frequencies. The basic requirement is only that

the kernel is non-negative.

Another application involves testing for the inclusion of additional UCs. Suppose that we

formulate a model for the time series that consists of two (possibly nonstationary) UCs. We may

wish to discern whether the second UC is warranted by the data. That is, we may wish to compare a

model having both UCs (say fθ) to a model containing only one (call this model fξ); then the model

for the second UC is fθ − fξ (if the components are stationary). In the spirit of likelihood-ratio

tests, we can use a weighting function of the form A/fξ, where the denominator corresponds to

the specific alternative of only one UC. One then modifies (8) by replacing the weighting functions

A/f j
θ by A/f j

ξ . The gof statistic is computed by fitting both models – the two UCs (fθ) and the

one UC (fξ) – and plugging into the formula for ψA. The kernel A would be chosen to weight the

difference between the spectra, where the second UC is expected to be concentrated.

For example, suppose that we have a macroeconomic series, and we wish to know whether a

cycle should be added as an unobserved component to the overall model. For concreteness, suppose

that the cycle (the second UC) is given by the AR(2) model (9), while the first UC just consists of

11



trend – say a generalized random walk. Then the once differenced trend has a spectral density fξ,

while the (differenced) alternative model consists of differenced trend plus differenced cycle, with

spectral density

fθ(λ) = fξ(λ) + |1− e−iλ|2q(λ),

where q(λ) is given by (10). We center the kernel on cycle frequencies (λ’s corresponding to 4

to 10 year periodicities), while excluding trend frequencies (λ’s close to zero) completely. Then

if the data has a significant spectral peak in a neighborhood of the cycle peak frequency ω and

fθ is unable to capture this behavior by itself, extreme values of the test statistic will tend to be

produced, resulting in rejection of H0 and incorporation of the cycle into our overall model.

More generally, we may wish to test a proposed model class fθ against a specific alternative

family G = {fξ}ξ∈Ξ In other words, we suppose that

Ha : f̃ ∈ G

with f̃ = fξ̃ for the unique pseudo-true value ξ̃. By using fξ in lieu of fθ in the definition of the

weighting functions, we may be able to increase our power against the specific alternative Ha. Such

test statistics will still be asymptotically normal, since Theorem 2 can easily be adapted: suppose

that each gi in (4) now depends on ξ instead of θ, written as gξ,i. Then so long as ξ̂− ξ̃ = OP (n−1/2)

(for MLEs or QMLs), where ξ̃ is the unique pseudo-true value (i.e., it is the minimizer of D(fξ, f̃)

when H0 holds), we have

{√n
(
Qn(Iji , gi, ξ̂)− ji!Qn(f ji

θ̂
, gi, ξ̂)

)
}L

i=1
L=⇒ N (0,W (θ̃, ξ̃)),

where the formulas for W (θ, ξ) are obtained from W (θ) by replacing gθ,k everywhere by gξ,k. (Also

note that now bk(θ, ξ) = (2π)−1 ∫ π
−π gξ,i(λ)f ji−1

θ (λ)∇θfθ(λ) dλ, and the formula for pθ,ξ,i is similarly

altered.) This assertion is proved by simply adapting the proof of Theorem 2, noting that we can

form the Taylor expansion of gξ̂,i about gξ̃,i without introducing additional error asymptotically.

What is the benefit of weighting by a particular alternative? Computing the asymptotic power,

we find that (6) for the modified ψA statistic (i.e., β1 = 1/2 instead of 1) yields (under the specific

alternative that f̃ = fξ̃)

1
2π

∫ π

−π
A(λ)

(
fθ̃(λ)
fξ̃(λ)

− 1

)2

dλ =
1
2π

∫ π

−π
A(λ)

(
k(λ)
fξ̃(λ)

− 1

)2

dλ,

where k = fθ̃ − fξ̃ (in the UC testing case, this corresponds to the second UC). In the conventional

weighting scheme, the corresponding power quantity is

− 1
2π

∫ π

−π
A(λ)

(
k(λ)

fξ̃(λ) + k(λ)
− 1

)2

dλ.
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The latter integrand will tend to be smaller, being close to unity on frequencies where k is large

and fξ̃ is small. Conversely, in the case where we weight by the alternative, the integrand can be

quite large, especially if k is large on a set of frequencies where fξ̃ is small (in the extreme case

that k and fξ̃ have disjoint support and A is constructed to have support contained within that of

k, we have A(k/fξ̃)
2 = ∞ and A(k/fθ̃)

2 = 1). This heuristic argument shows how weighting by

a specific alternative model can generate more power against that alternative hypothesis (if A is

chosen appropriately).

4 Empirical Study

In this section we explore the level and power of ψA in small samples via Monte Carlo simulation.

Additionally, we illustrate the utility of our approach by considering one of the stated applications

in the context of a real time series from the Energy Information Administration.

4.1 Simulation Study

A key motivation for this work has been to achieve reasonable levels at small samples (n ≤ 150)

typical of seasonally adjusted data at the U.S. Census Bureau (Gaussianity is a safe assumption

for such time series once outlier and calendar effects have been removed). Of course we also want

decent power in small samples; both levels and power are explored in a small simulation study.

Initial simulations indicated substantial asymmetry in ψA (a long right tail), with the bell-shape

only appearing for large (n ≥ 1000) sample sizes; the log transform method of Sections 2 and 3

greatly ameliorated this problem, providing decent levels even for small samples.

The simulation we perform to evaluate level assumes that, under the null hypothesis, the data

are Gaussian and come from either an AR(1) model with φ = .6 or an ARMA(1,1) with φ = θ = .6;

both models have unit innovation variance. Further, we conducted the simulation using two different

kernels A under various sample sizes. The first kernel is a band-limited version of the Tukey-Hanning

kernel (TH): a kernel of the form 1 + cos(λ), restricted to the frequencies (0, π/3) and centered

at π/6. The second kernel is the identity kernel on the interval (−π, π). A complete discussion

regarding kernels can be found in [17]. Finally, this simulation consisted of 10,000 repetitions at

the nominal α-level α = .05.

The simulation we perform to evaluate power assumes that the data are Gaussian and come from

the AR(2) cycle model given in (9) with ρ = .75 and unit innovation variance. Additionally, the null

model was chosen such that a spectral mode is present at frequency ω = .3069π. This choice comes

from considerations surrounding the model used for the Oil Data (analyzed in Section 4.2) where

the spectral peak is present in the low frequency band. The simulation was conducted under two

separate alternative specifications. In the first scenario the model under the alternative was chosen

to be from the class of AR(1) models while in the second case the model under the alternative
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was chosen to be from the class of ARMA(1,1) models. Thus both models are misspecified in

a manner that precludes the estimates from achieving the correct spectral shape. Moreover, the

simulations were all conducted using a band-limited Tukey-Hanning kernel with centering frequency

ω0 = .3069π and bandwidths δ = .6π, .4π; see [17] for a complete justification of these choices.

Finally, this simulation consisted of 10,000 repetitions at the nominal α-level α = .05.

The results of the simulation study demonstrated good finite sample performance for the limited

cases investigated (see Table 1). In general, both test statistics ψA and log(ψA) produced α-levels

close to the nominal α-level .05 for each of the sample sizes under consideration, though, in most

cases, they were slightly undersized. Furthermore, the distribution of both test statistics under

the null hypothesis approached the distribution of a standard normal random variable, confirming

our theoretical asymptotic results. However, in small sample sizes (i.e., n < 1000) the distribution

of the ψA test statistic was skewed right, even though the means and standard deviations were

at the approximate (0,1) level; see Table 1. Under these circumstances we found that the log

transformation helped alleviate this problem.

In general, for the cases we investigated, the power was excellent (Table 2). The one exception

was for log(ψA) under the ARMA(1,1) alternative for sample sizes less than or equal to 150. These

results are to be expected, since the class of models chosen under the alternative can not achieve

the spectral shape experienced under the null hypothesis. If instead of choosing an AR(1) or

ARMA(1,1) alternative we chose an AR(3) alternative, then the power would be very low. Again

this is reasonable since any AR(2) model can be perfectly fit by the class of AR(3) models by taking

the last AR coefficient equal to zero. Essentially this would yield a case where the local spectral

mass is in close agreement between the models under the null and alternative hypotheses, and thus

the test would have diminished power.

Further, it is important to bear in mind that the power performance of our diagnostics is linked

to the choice of bandwidth. Specifically, it is possible for the practitioner to take too local/global

a perspective and thus exclude/include spectral frequencies of interest resulting in a loss of power.

In summary, even for sample size as small as n = 100, the power of the tests (using a nominal

α-level of .05) were excellent under the gof statistic ψA, with less favorable results under log(ψA)

depending on the alternative. Although this simulation study is limited, it clearly demonstrates

the efficacy of our approach even in small samples.

4.2 Application: Spectral Peak Identification

For reasons of space we only consider the first application of spectral peak identification. We

consider the time series of Annual Crude Oil Prices from 1861-1999 measured in money of 1999

(see http://www.eia.doe.gov/emeu/international/contents.html for more information); this series

will be referred to as the Oil series.
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Now the data exhibit no trend nonstationarity, and ACF and PACF plots indicate a low order

AR model may be adequate. We considered various AR(p) models with 1 ≤ p ≤ 9, fitted using

the maximum likelihood method, and assessed their goodness-of-fit via AICc and Ljung-Box [15]

statistics (p = 9 was chosen as a threshold, since the AICc (see Hurvich and Tsai [13]) values were

much higher for AR models having more than this number of parameters). Note that although

the exact model specifications are not provided here they are available upon request from the

first author. The AR(4) was the preferred model according to AICc (among models not deemed

inadequate according to the Ljung-Box statistics). In fact, the Ljung-Box statistics rejected all

models but the AR(3) and AR(4). Both of these models contain a minor peak in the spectrum in

the appropriate “cycle band”. Given that stochastic cycles have a period between 4 and 10 years

(see the discussion in [11]), the cycle band for annual data consists of those frequencies between

π/2 and π/5. In both the AR(3) and AR(4) models, there is a pair of complex conjugate roots

with frequency .443π and .358π respectively; these frequencies give approximate locations for the

spectral peaks, and are in the right region for a cycle. The AR(1) and AR(2) models fail to capture

the cycle dynamics in the data, as they do not have any complex conjugate roots.

Hence in running our diagnostics, we center the kernel A in the cycle band (π/5, π/2) using

centering frequency ω0 = .3069π with bandwidths .6π, .4π and .2π. For this analysis we used a

TH kernel ([17]) as well as the identity kernel on (−π, π). As expected, if we take a more refined

perspective (a smaller bandwidth) the local properties in the neighborhood of the spectral mode

become more salient (Table 3). In fact, the only model that is deemed appropriate, using the

untransformed statistic under the identity kernel is the AR(1) model. In contrast, if we take a

weighting kernel centered at the peak frequency with narrow bandwidth (i.e., .2π) then the only

models deemed acceptable, using the log-transformed diagnostic, are the AR(3) and AR(4), while

using the ψA diagnostics only the AR(4) model is deemed acceptable. These results should be

contrasted with the Ljung-Box diagnostics, which consist of a series of p-values at various lags

(results available upon request). For the latter two models (AR(3) and AR(4)), all the Ljung-Box

statistics are well above the .05 level, indicating adequacy. Thus, the proper diagnostic in this case

is one that focuses on the locality of the postulated peak.

5 Conclusion

This paper treats band-limited gof testing using a quadratic functional of the periodogram. The-

orems 1 and 2 together provide a complete asymptotic theory (under both null and alternative

hypotheses) for these types of statistics, taking parameter uncertainty into account in the asymp-

totic variance. We develop several applications, such as peak testing and UC testing, and provide

simulations documenting the level and power properties. The performance in small samples is fairly

good in comparison to similar procedures (cf. Eichler [9]).
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A limitation of our method is the regularity conditions required by the theory, in particular near-

Gaussianity of the data. We would not expect these techniques to work well in the context of a high

degree of non-normality. Moreover, the practitioner must choose a band-limited kernel A, upon

which the power of the test will be sensitive. Using the identity kernel weights all frequencies equally,

while restricting to a frequency band may generate increased power against certain alternatives.

Our simulation studies and data analysis were necessarily limited, and future studies will focus

on expanding these empirical results to testing for UCs and weighting by a specific alternative

model. Additionally, many other types of statistics may be considered by applying Theorem 2 –

for example, the signal extraction diagnostics of McElroy [16] easily fall under this scope. Another

potential application is to compare gof tests for two fitted models in the spirit of Rivers and Vuong

[22].

In summary, our gof statistic ψA is a flexible addition to more traditional time-domain diagnos-

tics, such as the Ljung-Box [15] statistics. Specifically, our approach allows the modeler the ability

to focus on particular frequency bands of interest, and so the theory and methods of this paper can

be fruitfully adapted to many different applications.
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Appendix

A.1 Proofs

Proof of Theorem 1. The technique of proof is a simple adaption of the proof of Theorem

3 of Chiu [6], using material from Brillinger [3]. We use the Cramér-Wold device: take scalars

α1, · · · , αL and consider

1√
n

(∑

λ

L∑

i=1

αigθ,i(λ)Iji(λ)−
∑

λ

L∑

i=1

ji!αigθ,i(λ)f̃ ji(λ)

)
.

For simplicity let φi(λ) = αigθ,i(λ), so that we consider

1
n

∑

λ

L∑

i=1

φi(λ)Iji(λ), (A.1)

appropriately centered. From the proof of Theorem 2 of Chiu [6], this centering is 1
n

∑
λ

∑L
i=1 ji!φi(λ)f̃ ji(λ).

We will generalize Theorem 5.10.2 of Brillinger [3] to higher powers of the periodogram. Define the

discrete Fourier transform of the data at Fourier frequencies λ by

d(λ) =
n∑

t=1

Xt e−iλt.
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Hence I(λ) = d(−λ)d(λ)/n. Now the variance of
√

n times (A.1) is given by

n−1
∑

λ1

∑

λ2

L∑

i,k=1

φi(λ1)φk(λ2) cum(Iji(λ1), Ijk(λ2)).

Fix i and k for the moment, and without loss of generality suppose that i ≥ k. Then the corre-

sponding term in the variance is given by

n−(ji+jk+1)
∑

ν

∑

λ1

∑

λ2

φi(λ1)φk(λ2) cum{d(ωlm); lm ∈ ν1} · · · cum{d(ωlm); lm ∈ νq},

where ωlm = (−1)mλl and the summation in ν is over all indecomposable partitions of the following

table (see Brillinger [3])

(1, 1) · · · (1, 2jk) · · · (1, 2ji)

(2, 1) · · · (2, 2jk).

This result is obtained by applying Theorem 2.3.2 of Brillinger [3] to

Iji(λ1) = n−ji(d(−λ1) · d(λ1))
ji

Ijk(λ2) = n−jk(d(−λ2) · d(λ2))
jk .

Now our task is to determine which indecomposable partitions ν will yield asymptotically non-

negligible contributions to the variance. In order to do this, we introduce some terminology. Let a

p-set be any subset of a given table with exactly p elements. We will say that a p-set straddles the

table if it has at least one element in each row. Now a partition ν consists of a disjoint collection

of p-sets (for various p), such that the union yields the whole table. Note that these p-sets need

not be connected. Below, we will show that the only partitions ν that we need to consider are of

two types: either they contain exactly one 4-set (which straddles, with 2 elements in the top row

and 2 in the bottom), jk − 1 non-straddling 2-sets (contained in the first row) and another ji − 1

non-straddling 2-sets (contained in the second row); or there are jk + ji 2-sets, where at least one

2-set straddles. There are additional conditions on these partitions as well, which are discussed

below.

In the following analysis, we use Theorem 4.3.2 of Brillinger [3], which requires condition 3.

Specifically, we use (4.3.15), which is a special case of the above theorem. Asymptotically, the

term ∆(λ) =
∑n

t=1 e−iλt tends to zero unless λ = 0, in which case the sum is n. Now in order for

a particular partition to contribute to the variance asymptotically, the corresponding cumulants

must together produce ji + jk − 1 powers of n – then the overall exponent of n will be −2, which

will counteract the growth in the double sum over λ1 and λ2. However, it is possible for the double

sum to collapse into a single sum (e.g., when λ1 = λ2), in which case we require ji + jk powers of

n. Now according to (4.3.15) of Brillinger [3], for a particular p-set in a partition ν, the function
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∆ is evaluated at the sum of the ωlm’s such that (l, m) are in that p-set. Moreover, ∆ evaluated at

this sum is asymptotically negligible unless the sum is zero; hence, we can only supply powers of n

by considering p-sets such that all the ωlm’s sum to zero. We refer to
∑

(l,m)∈B ωlm as the ω-sum

of the p-set B. For visualization, it is helpful to write out the table of ωlm’s corresponding to the

table given above:

− λ1 λ1 · · · − λ1 λ1 · · · − λ1 λ1

− λ2 λ2 · · · − λ2 λ2.

Clearly, the 2-set given by {(1, 1), (1, 2)} has corresponding ω-sum of zero. Now it follows that if p

is odd, the ω-sum of that p-set cannot be zero. Since we always need to generate ji + jk− 1 powers

of n (and possibly ji + jk powers of n), we must have at least ji + jk − 1 p-sets (but for different p,

possibly) in a partition ν. Since the total size of the table is 2ji +2jk, this excludes p ≥ 6 outright.

Also, having more than one 4-set is excluded as well. Hence, the only possible partitions would

have a single 4-set and ji + jk − 1 2-sets, or simply ji + jk 2-sets. Let us consider the former type

in more detail.

4-set, 2-set partitions Now for this type of partition, the ω-sum over the 4-set and over each

of the 2-sets must be zero. Note that we can effectively ignore the “diagonal” aspect of the double

sum over λ1, λ2, i.e., the cases that λ1 = λ2 or λ1 = −λ2. This is because the total number of

sets in this partition is ji + jk, so that the overall exponent of n is −2; since a single summation

in λ is only order n, it is asymptotically negligible. Hence the ω-sum for each of the 2-sets is only

zero if they don’t straddle, i.e., they are contained in a row. For those 2-sets in the first row, they

consist of exactly one choice of λ1 and one choice of −λ1; for 2-sets in the second row, they consist

of exactly one choice of λ2 and one choice of −λ2. In order for the partition to be indecomposable,

the 4-set must straddle (essentially, the condition of indecomposability for a two row table amounts

to the condition that at least one p-set in the partition straddles). It is easy to see that the 4-set

must contain the elements λ1,−λ1, λ2,−λ2 in some order (it is not possible to draw three elements

from one row and one from another). This gives a precise description of the p-sets in this type of

partition; it is sufficient to count up the number of such partitions using elementary combinatorics.

Ignore for a moment the 4-set and consider the first element λ1 in position (1, 2) in the table.

There are ji choices of the element −λ1 that it can form a 2-set with, such that the ω-sum is

zero. Moving on to the second such element in position (1, 4), there are now ji − 1 such choices.

Proceeding in this fashion, we obtain ji! such 2-set configurations. Independently, we pair up λ2

with elements −λ2 in the second row, and obtain jk! configurations there. Now we wish to pick one

of the first row 2-sets and one of the second row 2-sets, and combine them into a 4-set: there are

ji jk ways of doing this (ji 2-set choices for the first row, and jk 2-set choices for the second row).

Therefore, the number of 4-set, 2-set partitions is jijkji!jk!.
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Next, we see from (4.3.15) of Brillinger [3] that each of these partitions yields the same contri-

bution to the variance, namely

GX(λ1,−λ1, λ2)f̃ ji−1(λ1)f̃ jk−1(λ2).

Note that the 2π factors do not appear, since we define our cumulant spectral densities without this

normalization, which differs from Brillinger [3]. Combining with the φj ’s and replacing the Riemann

sum by an integral (which is valid asymptotically, because these integrands are deterministic) yields

jijkji!jk!
(2π)2

∫ π

−π

∫ π

−π
φi(λ)φk(ω)GX(λ,−λ, ω)f̃ ji−1(λ)f̃ jk−1(ω) dλdω.

2-set partitions Again we must have the ω-sum of each 2-set to be zero, but since there are

ji + jk sets, the contribution to the variance from these types of partitions will still be negligible

unless the double sum collapses. Hence we will have two classes of partitions: either λ1 is paired

with a λ2 or a −λ1 in every 2-set, or λ1 is paired with a −λ2 or a −λ1 in every 2-set. In other words,

the first case stipulates that no λ1 and −λ2 are together in a 2-set. Focusing on this case, if a given

2-set contains a λ1 and a −λ1, then the corresponding ω-sum is zero; likewise for 2-sets containing

a λ2 and a −λ2. However if the elements are λ1 and λ2, the ω-sum is only zero if λ1 = −λ2, which

essentially stipulates a condition on the double sum. Since all the ω-sums must be zero for the

partition to make a non-negligible contribution, we see that we must have λ1 = −λ2. Since there

are ji + jk 2-sets, the overall exponent of n is −1, which balances the single sum. The number of

f̃(λ1) and f̃(λ2) terms is difficult in principal to determine, but since λ = −λ2 and f̃ is even, we

are only concerned with the total number of such terms, which is ji + jk.

On the other hand, if no λ1 and λ2 can be in the same 2-set, we obtain a zero ω-sum for 2-sets

containing a λ1 and a −λ2 only if λ1 = λ2. Hence the double sum collapses to a single sum here as

well. The contribution to the variance will then be

n−1
∑

λ1

(
φi(λ1)φk(−λ1)f̃ ji+jk(λ1) + φi(λ1)φk(λ1)f̃ ji+jk(λ1)

)
.

It remains to count how many such partitions exist; we count the number of partitions yielding

the first case, and the same argument can be applied to the second case. First consider including

decomposable partitions in the count. Taking the first λ1 element in the (1, 2) location of the table,

there are ji choices of −λ1 to pair with, and jk choices of λ2, so ji + jk choices total. For the second

λ1, there is one less −λ1 or one less λ2, for a total ji + jk − 1 remaining choices. All together, we

find mates for the λ1 elements in (ji + jk)(ji + jk − 1) · · · (jk + 1) ways. Now consider the first

−λ2 element (none of the λ2 elements have yet been paired). It may only pair with λ2 or −λ1, of

which in total there are only jk remaining choices. Proceeding, we obtain jk! choices of mates for

the various −λ2, and so have (ji + jk)! configurations of 2-sets satisfying our conditions. However,

some of these partitions are decomposable, so we must subtract off their contribution. As discussed
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above, there are ji!jk! such decomposable partitions, thus our summary count is (ji + jk)!− ji!jk!.

Now replacing the Riemann sum by an integral, we have a variance contribution of

(ji + jk)!− ji!jk!
2π

∫ π

−π
(φi(λ)φk(−λ) + φi(λ)φk(λ)) f̃ ji+jk(λ) dλ.

All together, the asymptotic variance of
√

n times (A.1) yields V given by

V =
L∑

k,l=1

(jk + jl)!− jk!jl!
2π

∫ π

−π
(φk(λ)φl(−λ) + φk(λ)φl(λ))f̃ jk+jl(λ) dλ

+
jkjk!jljl!

(2π)2

∫ π

−π

∫ π

−π
φk(λ)φl(ω)GX(λ,−λ, ω)f̃ jk−1(λ)f̃ jl−1(ω) dλdω. (A.2)

Finally, we must consider the higher order cumulants, and show that they always tend to zero as

n →∞. Consider the hth cumulant of (A.1), which yields

n−h
∑

λ1

·
∑

λh

L∑

i1,··· ,ih
φi1(λ1) · · ·φih(λh) cum{Iji1 (λ1), · · · , Ijih (λh)}

= n−h−r
∑

λ1

·
∑

λh

L∑

i1,··· ,ih
φi1(λ1) · · ·φih(λh)

∑
ν

cum{d(ωlm); lm ∈ ν1} · · · cum{d(ωlm); lm ∈ νq},

where r = ji1 + · · ·+ jih and the summation in ν is over all indecomposable partitions of the table

(1, 1) · · · (1, 2ji1)

(2, 1) · · · (2, 2ji2)
...

(h, 1) · · · (h, 2jih).

We seek the dominant term in the above cumulant. If we consider an indecomposable partition ν

of the above table, many of the same principles apply from our variance analysis. In particular, we

need not consider p-sets in ν with p odd. And the greatest number of factors of n are produced

from ∆ evaluated at ω-sums, if we were to take ν to be a partition consisting solely of 2-sets,

where each λk is paired with a −λk. This would produce r factors of n. However, this approach

leads to a decomposable partition, since no 2-set straddles. By joining two such 2-sets into a 4-set,

we decrease our exponent of n by one. In order to maximize the powers of n contributed by the

partition, and at the same time obtain an indecomposable partition, we need h − 1 4-sets that

straddle such that no row consists purely of 2-sets. Then the rest are row-contained 2-sets, and the

total powers of n contributed will be r−h+1. This is the most that can be contributed; note that

partitions that require a collapsing of λ-sums actually lower the order (which can be compensated

by choosing the partition appropriately). So the maximum exponent of n will be −2h + 1. Now

h of these factors will go towards offsetting the growth due to the λ sums. This leaves an overall

order for (A.1) of n−h+1.
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Finally, we multiply by nh/2 and obtain the order n−h/2+1. This is negative if h > 2, and hence

all cumulants of order h ≥ 3 tend to zero. Hence the characteristic function tends to that of a

Gaussian with mean zero and variance V (A.2). This establishes the joint asymptotic normality,

and the asymptotic covariance matrix is obtained as follows. With ej denoting the jth unit vector

in RL and α′ = (α1, · · · , αL), we find that the variance Vkl(θ) in the statement of Theorem 1 is

given by (V (ek + el) − V (ek) − V (el))/2, where V (α) is given by (A.2), recalling that φi = αigθ,i.

2

Proof of Theorem 2. For each i we have

Qn(Iji , gi, θ̂)− ji!Qn(f ji

θ̂
, gi, θ̂) (A.3)

=
(
Qn(Iji , gi, θ̂)− ji!Qn(f̃ ji , gi, θ̂)

)
+

(
ji!Qn(f̃ ji , gi, θ̂)− ji!Qn(f ji

θ̂
, gi, θ̂)

)
.

The first term on the right hand side above is asymptotically normal under certain conditions on

gi. The second term in (A.3) is also asymptotically normal (under H0), and correlated with the

first term. The first term can be written as

Qn(Iji , gi, θ̂)− ji!Qn(f̃ ji , gi, θ̂) =
1
n

∑

λ

gθ̂,i(λ)
(
Iji(λ)− ji!f̃ ji(λ)

)
.

Expanding gθ̂,i about θ̃ (use condition 8) yields

gθ̂,i(λ) = gθ̃,i(λ) +∇′θgθ̃,i(λ)(θ̂ − θ̃) +
1
2
(θ̂ − θ̃)

′
Hθgθ̇,i(λ)(θ̂ − θ̃)

∇θgθ̃,i(λ) = ∇θgθ,i(λ)|θ=θ̃

[Hθgθ̇,i(λ)]
kl

=
∂

∂θk

∂

∂θl
gθ,i(λ)|θ=θ̇,

where each component of θ̇ lies in-between (condition 5) the respective components of θ̂ and θ̃. Since

θ̂− θ̃ = OP (n−1/2) (Theorem 3.1.2 of Taniguchi and Kakizawa [23]; use condition 6 and 9, and also

condition 2 which implies the needed Hosoya-Taniguchi conditions [12]) and Hθgθ̇,i(λ) P−→ Hθgθ̃,i(λ)

by the smoothness of gθ,i (condition 8),

gθ̂,i(λ) = gθ̃,i(λ) + (θ̂ − θ̃)
′∇θgθ̃,i(λ) + OP (n−1)

uniformly in λ. Hence

Qn(Iji , gi, θ̂)− ji!Qn(f̃ ji , gi, θ̂)

=
1
n

∑

λ

gθ̃,i(λ)(Iji(λ)− ji!f̃ ji(λ)) + (θ̂ − θ̃)
′ 1
n

∑

λ

∇θgθ̃,i(λ)(Iji(λ)− ji!f̃ ji(λ)) + OP (n−1).

Now applying Theorem 1 (conditions 1, 3, 8), we see that the second term on the right hand side

is OP (n−1) as well. Thus
√

n
(
Qn(Iji , gi, θ̂)− ji!Qn(f̃ ji , gi, θ̂)

)
=

1√
n

∑

λ

gθ̃,i(λ)(Iji(λ)− ji!f̃ ji(λ)) + OP (n−1/2).
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Now for the second term of (A.3), which can be written as

ji!Qn(f̃ ji , gi, θ̂)− ji!Qn(f ji

θ̂
, gi, θ̂) = −ji!

n

∑

λ

gθ̂,i(λ)
[(

f ji

θ̃
(λ)− f̃ ji(λ)

)
+

(
f ji

θ̂
(λ)− f ji

θ̃
(λ)

)]
.

We expand gθ̂,i as before, and also we have (condition 7)

f ji

θ̂
(λ) = f ji

θ̃
(λ) + jif

ji−1

θ̃
(λ)(θ̂ − θ̃)

′∇θfθ̃(λ) + OP (n−1)

by the smoothness of fθ. Hence we obtain

√
nji!

(
Qn(f̃ ji , gi, θ̂)−Qn(f ji

θ̂
, gi, θ̂)

)

= − ji!√
n

∑

λ

(
gθ̃,i(λ) + (θ̂ − θ̃)

′∇θgθ̃,i(λ)
) (

f ji

θ̃
(λ)− f̃ ji(λ) + jif

ji−1

θ̃
(λ)(θ̂ − θ̃)

′∇θfθ̃(λ)
)

+ oP (1)

= −ji!
√

n(θ̂ − θ̃)
′ 1
n

∑

λ

[
(f ji

θ̃
(λ)− f̃ ji(λ))∇θgθ̃,i(λ) + jigθ̃,i(λ)f ji−1

θ̃
(λ)∇θfθ̃(λ)

]

−√n
ji!
n

∑

λ

gθ̃,i(λ)(f ji

θ̃
(λ)− f̃ ji(λ)) + oP (1).

The second term is a deterministic bias, which is zero under H0; therefore it must be subtracted

off in order to obtain asymptotic normality. This quantity is just (5), up to the factor
√

nji!.

The quantity multiplying the parameter estimation error is deterministic, and is a Riemann sum

approximation of bi(θ̃). So by utilizing the arguments in the proof of Theorem 3.1.2 of Taniguchi

and Kakizawa [23], we have

√
n

(
θ̂ − θ̃

)
= M−1

f (θ̃)
1√
n

∑

λ

∇θfθ̃(λ)(I(λ)− f̃(λ))f−2

θ̃
(λ) + oP (1).

Therefore we obtain

√
nji!

(
Qn(f̃ ji , gi, θ̂)−Qn(f ji

θ̂
, gi, θ̂)

)

= −ji!b′i(θ̃)M
−1
f (θ̃)

1√
n

∑

λ

∇θfθ̃(λ)(I(λ)− f̃(λ))f−2

θ̃
(λ)

− ji!
√

n
1
2π

∫ π

−π
gθ̃,i(λ)(f ji

θ̃
(λ)− f̃ ji(λ)) dλ + oP (1).

We now prove the normality result using the Cramér-Wold device; first we dispense with the

asymptotic bias term by subtracting it off – essentially we suppose that this term is zero (as if H0

were true) so as not to burden the formulas. Letting α′ = (α1, · · · , αL) be a sequence of constants,
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we have

L∑

i=1

αi

√
n

(
Qn(Iji , gi, θ̂)− ji!Qn(f ji

θ̂
, gi, θ̂)

)

=
1√
n

∑

λ

(
L∑

i=1

αigθ̃,i(λ)(Iji(λ)− ji!f̃ ji(λ)) +
L∑

i=1

αipθ̃,i(λ)(I(λ)− f̃(λ))

)
+ oP (1)

=
1√
n

∑

λ

L+1∑

i=1

φi(λ)(Iji(λ)− ji!f̃ ji(λ)) + oP (1)

with jL+1 = 1 and φi(λ) = αigθ̃,i(λ) for i = 1, 2, · · · , L, and φL+1(λ) =
∑L

i=1 αipθ̃,i(λ). We can

now apply Theorem 1 to the final expression, and obtain asymptotic normality with variance V (α)

given by

V (α) =
L∑

k,l=1

(jk + jl)!− jk!jl!
4π

∫ π

−π
(φk(λ)φl(−λ) + φk(−λ)φl(λ) + 2φk(λ)φl(λ)) f̃ jk+jl(λ) dλ.

Note the variance expression is simplified because condition 4 follows from condition 2. Hence the

joint asymptotic normality result for
√

n(Qn(Iji , gi, θ̂)−ji!Qn(f ji

θ̂
, gi, θ̂)) is proved, with asymptotic

covariance matrix W (θ̃) with entries

Wk,l(θ̃) =
1
2

(V (ek + el)− V (ek)− V (el)) . (A.4)

We compute these quantities next. If α = ek, then φj is zero unless j = k or j = L + 1, in which

case it is gθ̃,l or pθ̃,l respectively. It follows that

V (ek) =
(2jk)!− jk!2

2π

∫ π

−π
(gk(λ)gk(−λ) + g2

k(λ))f̃2jk(λ) dλ

+
1
2π

∫ π

−π
(pk(λ)pk(−λ) + p2

k(λ))f̃2(λ) dλ

+
(jk + 1)!− jk!

2π

∫ π

−π
(gk(λ)pk(−λ) + pk(λ)gk(−λ) + 2gk(λ)pk(λ))f̃ jk+1(λ) dλ.
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Next (say k 6= l) if α = ek + el, then φj is zero unless j = k, l, L + 1, in which case it equals gθ̃,k,

gθ̃,l, or pθ̃,k + pθ̃,l respectively. Then

V (ek + el) =
(2jk)!− jk!2

2π

∫ π

−π
(gk(λ)gk(−λ) + g2

k(λ))f̃2jk(λ) dλ

+
(2jl)!− jl!2

2π

∫ π

−π
(gl(λ)gl(−λ) + g2

l (λ))f̃2jl(λ) dλ

+
1
2π

∫ π

−π
((pk(λ) + pl(λ))(pk(−λ) + pl(−λ)) + (pk(λ) + pl(λ))2f̃2(λ) dλ

+
(jk + jl)!− jk!jl!

2π

∫ π

−π
(gk(λ)gl(−λ) + gk(−λ)gl(λ) + 2gk(λ)gl(λ))f̃ jk+jl(λ) dλ

+
(jk + 1)!− jk!

2π

∫ π

−π
(gk(λ)(pk(−λ) + pl(−λ)) + gk(−λ)(pk(λ) + pl(λ))

+ 2gk(λ)(pk(λ) + pl(λ)))f̃ jk+1(λ) dλ

+
(jl + 1)!− jl!

2π

∫ π

−π
(gl(λ)(pk(−λ) + pl(−λ)) + gl(−λ)(pk(λ) + pl(λ))

+ 2gl(λ)(pk(λ) + pl(λ)))f̃ jl+1(λ) dλ.

Now applying (A.4) we obtain the stated formula for Wkl(θ̃) when k 6= l. Of course Wkk(θ̃) = V (ek),

but the same formula covers this case too. Finally, when the weighting functions are even, we have

bk(θ) = (2π)−1 ∫ π
−π rθ,k(λ)∇θhθ(λ) dλ and

Wkl(θ̃) =
(jk + jl)!− jk!jl!

π

∫ π

−π
rθ̃,k(λ)rθ̃,l(λ) dλ

+
(jk + 1)!− jk!

π

∫ π

−π
rθ̃,k(λ)

(
−jljl!b′lM

−1
f (θ̃)∇θhθ̃(λ)

)
dλ

+
(jl + 1)!− jl!

π

∫ π

−π
rθ̃,l(λ)

(
−jkjk!b′kM

−1
f (θ̃)∇θhθ̃(λ)

)
dλ

+
1
π

∫ π

−π

(
−jljl!b′lM

−1
f (θ̃)∇θhθ̃(λ)

)(
−jkjk!b′kM

−1
f (θ̃)∇θhθ̃(λ)

)
dλ.

This simplifies to the stated expression, recognizing that

1
2π

∫ π

−π
∇′θhθ̃(λ)∇θhθ̃(λ) dλ = Mf (θ̃)

under H0. This proves the theorem for QMLs; for the MLE case, we need only show that the

difference between parameter estimates is oP (1/
√

n) – but this follows from Theorems 3.2 and

3.3 of Dahlhaus and Wefelmeyer [7] under the additional condition 10. Finally, we make some

comments on the assumptions. Condition 4 is not really necessary, but for the purposes of variance

estimation (and stating the result more simply), we have decided to leave off the contribution of

fourth order cumulants. Since a Gaussian assumption is needed for the MLE case anyways, and this

also implies the Hosoya-Taniguchi conditions needed for Theorem 3.1.2 of Taniguchi and Kakizawa
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[23], we have proved the theorem under the more restrictive condition 2. It seems likely that the

asymptotic results in the proof of Theorem 3.1.2 could be proved under condition 3 only, and then

condition 2 could be relaxed to condition 4 in the QML case. Conditions 5 through 9 are fairly

standard and are often satisfied in practice. 2

Proof of Proposition 1. The Fisher information matrix is a continuous function of θ by our

assumptions on fθ, and likewise each entry of the inverse matrix is continuous in θ. The vector func-

tions bk(θ) are also continuous (by our assumptions on gθ,k), and so the result follows immediately.

2

A.2 Implementation Notes for ARMA Models

First consider the case where the parametric family is an AR(p), where p is fixed throughout.

Then θ′ = (φ1, φ2, · · · , φp, θq), where q = p+1 and θq is the innovation variance. As usual we write

Φ(B) = 1− φ1B − φ2B − · · · − φpB
p for the autoregressive polynomial. Then the spectral density

for this AR(p) is

fθ(λ) = |1− φ1e
−iλ − φ2e

−i2λ − · · · − φpe
−ipλ|−2

θq.

We need to compute the gradient with respect to θ. Now the last derivative is just the innovation-

free spectrum. In general,

∂

∂θj
fθ(λ) =

e−iλj

Φ(e−iλ)
fθ(λ) +

eiλj

Φ(eiλ)
fθ(λ) j = 1, 2, · · · , p

∂

∂θq
fθ(λ) =

1
Φ(e−iλ)Φ(eiλ)

.

Starting with the calculation of Mf,H0(θ), we divide the gradient by fθ:

hθ,j(λ) =
e−iλj

Φ(e−iλ)
+

eiλj

Φ(eiλ)
j = 1, 2, · · · , p

hθ,q(λ) = θ−1
q .

Now we observe that (2π)−1 ∫ π
−π eiλh/Φ(e−iλ)dλ is zero if h < 0. A similar result holds for Φ(eiλ).

Hence we can compute the entries of Mf,H0(θ) as follows: the klth entry is the integral of the

product of hk and hl. Using the above observations, we find that the qth row and column of

Mf,H0(θ) are both zero, except for the diagonal entry, which is θ−2
q . As for the other entries,

suppose 1 ≤ k, l ≤ p. Then the matrix entry is

1
2π

∫ π

−π

(
e−iλ(k+l)

Φ2(e−iλ)
+

eiλ(k+l)

Φ2(eiλ)
+

eiλ(k−l)

Φ(e−iλ)Φ(eiλ)
+

eiλ(l−k)

Φ(e−iλ)Φ(eiλ)

)
dλ = 2γfθ

(k − l).

Here fθ = fθ/θq, the innovation-free spectral density. We note that software exists to easily

compute these quantities rapidly from a knowledge of θ.
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Next, consider b1(θ) and b2(θ). Since the index i = 1 corresponds to the squared periodogram

(j1 = 2), it follows that gθ,1 = A/f2
θ . Also, i = 2 corresponds to j2 = 1, so gθ,2 = A/fθ.

Thus b1(θ) = (2π)−1 ∫ π
−π A(λ)hθ(λ)dλ = b2(θ), where hθ is a q-vector function with components

hθ,j . Since b1 and b2 are identical in this case, call the vector b instead. Hence we can compute

b′(θ)M−1
f,H0

(θ), plugging in MLEs for θ. Next, we can write simplified expressions for the entries of

WH0(θ) under the assumption that A is even:

W11(θ) = 40γA2(0)− 32b′(θ̃)M−1
f (θ̃)b(θ̃)

W12(θ) = 8γA2(0)− 8b′(θ̃)M−1
f (θ̃)b(θ̃)

W22(θ) = 2γA2(0)− 2b′(θ̃)M−1
f (θ̃)b(θ̃)

So computation of the quadratic form b′(θ)M−1
f,H0

(θ)b(θ), together with γA2(0), produces these

values. The variance of the ψA statistic is then

W11 − 4W12 + 4W22 = 16γA2(0)− 8b′(θ̃)M−1
f (θ̃)b(θ̃).

Now consider the case where the parametric family is an MA(r), where r is fixed throughout.

Then θ′ = (θ1, θ2, · · · , θr, θq), where q = r + 1 and θq is the innovation variance. As usual we write

Θ(B) = 1 + θ1B + θ2B + · · ·+ θrB
r for the moving average polynomial. Then the spectral density

for this MA(r) is

fθ(λ) = Θ(e−iλ)Θ(eiλ)θq.

We need to compute the gradient with respect to θ. Now the last derivative is just the innovation-

free spectrum. In general,

∂

∂θj
fθ(λ) = e−iλjΘ(eiλ)θq + eiλjΘ(e−iλ)θq j = 1, 2, · · · , r

∂

∂θq
fθ(λ) = Θ(e−iλ)Θ(eiλ).

As with the AR(p), we have

hθ,j(λ) =
e−iλj

Θ(e−iλ)
+

eiλj

Θ(eiλ)
j = 1, 2, · · · , r

hθ,q(λ) = θ−1
q .

This has the exact same form as the AR(r) case, only with Θ(B) substituted for Φ(B). Therefore

all the rest of the formulas are the identical, essentially substituting θk for −φk everywhere with

1 ≤ k ≤ r.

Finally, consider the case where the parametric family is an ARMA(p, r), where p and r are fixed

throughout. Then θ′ = (φ1, · · · , φp, θ1, θ2, · · · , θr, θq), where q = p + r + 1 and θq is the innovation

variance. We employ the notations from the AR and MA discussions. The spectral density is

fθ(λ) =
Θ(e−iλ)Θ(eiλ)
Φ(e−iλ)Φ(eiλ)

θq.
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We need to compute the gradient with respect to θ. Now the last derivative is just the innovation-

free spectrum. For the other derivatives, we can combine the AR and MA results:

∂

∂θj
fθ(λ) =

e−iλj

Φ(e−iλ)
fθ(λ) +

eiλj

Φ(eiλ)
fθ(λ) j = 1, 2, · · · , p

∂

∂θj
fθ(λ) =

(
e−iλ(j−p)Θ(eiλ) + eiλ(j−p)Θ(e−iλ)

) θq

Φ(e−iλ)Φ(eiλ)
j = p + 1, · · · , p + r

∂

∂θq
fθ(λ) = fθ(λ).

Then we obtain

hθ,j(λ) =
e−iλj

Φ(e−iλ)
+

eiλj

Φ(eiλ)
j = 1, 2, · · · , p

hθ,j(λ) =
e−iλ(j−p)

Θ(e−iλ)
+

eiλ(j−p)

Θ(eiλ)
j = p + 1, · · · , p + r

hθ,q(λ) = θ−1
q .

Next we compute the entries of Mf,H0(θ) as follows: the qth row and column of Mf,H0(θ) are both

zero, except for the diagonal entry, which is θ−2
q . As for the other entries, we can divide into blocks.

For the k, lth entry, if 1 ≤ k, l ≤ p then the entries correspond to the pure AR(p) case matrix

coefficients. But if p+1 ≤ k, l ≤ p+ r then the entries correspond to the pure MA(r) case. Finally,

if 1 ≤ k ≤ p and p + 1 ≤ l ≤ p + r (the same result holds with k and l swapped) then the entry is

1
2π

∫ π

−π

(
e−iλ(k+l−p)

Θ(e−iλ)Φ(e−iλ)
+

eiλ(k+l−p)

Θ(eiλ)Φ(eiλ)
+

eiλ(k−l+p)

Θ(e−iλ)Φ(eiλ)
+

eiλ(l−k−p)

Φ(e−iλ)Θ(eiλ)

)
dλ = 2γv(k − l)

with v(λ) = 1/(Θ(e−iλ)Φ(eiλ)). Now the calculations for b(θ) are the same as the pure AR and

MA cases, only we now substitute the hθ given above.
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Level AR(1) - φ = .6

A=TH kernel; ω0 = π/6; δ = π/3 n = 100 n = 150 n = 250 n = 500 n = 1000 n = 5000

mean - ψA -.085 -.061 -.045 -.018 -.015 -.009

sd - ψA .790 .838 .864 .907 .940 .927

level - ψA .025 .032 .032 .034 .036 .034

mean - log(ψA) -.292 -.232 -.195 -.124 -.098 -.048

sd - log(ψA) .823 .847 .880 .933 .974 .993

level - log(ψA) .033 .032 .032 .039 .046 .048

A = 1(−π,π) n = 100 n = 150 n = 250 n = 500 n = 1000 n = 5000

mean - ψ1 -.153 -.154 -.130 -.083 -.049 -.027

sd - ψ1 .917 .938 .944 .971 .995 .992

level - ψ1 .027 .032 .034 .042 .048 .047

mean - log(ψ1) -.006 -.037 -.040 -.023 -.006 -.008

sd - log(ψ1) .839 .883 .912 .952 .984 .990

level - log(ψ1) .023 .030 .032 .040 .046 .048

Level ARMA(1,1) - φ = θ = .6

A=TH kernel; ω0 = π/6; δ = π/3 n = 100 n = 150 n = 250 n = 500 n = 1000 n = 5000

mean - ψA -.058 -.050 -.035 -.035 -.017 -.009

sd - ψA .827 .846 .860 .901 .920 .928

level - ψA .031 .031 .032 .033 .034 .036

mean - log(ψA) -.285 -.238 -.185 -.143 -.106 -.047

sd - log(ψA) .837 .852 .887 .934 .973 .990

level - log(ψA) .031 .030 .033 .040 .044 .047

A = 1(−π,π) n = 100 n = 150 n = 250 n = 500 n = 1000 n = 5000

mean - ψA .334 .150 .100 .040 .033 .020

sd - ψA 1.918 1.352 1.154 1.053 1.031 1.018

level - ψA .101 .078 .068 .058 .054 .053

mean - log(ψA) .046 -.059 -.066 -.080 -.059 -.021

sd - log(ψA) 1.062 .965 .964 .971 .989 1.009

level - log(ψA) .043 .037 .038 .043 .049 .052

Table 1: Results of a Monte Carlo simulation to evaluate the level of the gof statistic ψA and its’ log
transformed counterpart. The simulations consisted of 10,000 replications using the nominal α-level
α = .05. The top panel, under each model specification, illustrates the use of a band-limited kernel
A of the form 1 + cos(λ), the Tukey-Hanning kernel (TH), centered at ω0 = π/6 having bandwidth
δ = π/3. The bottom panel, under each model specification, uses an identity kernel on the interval
(−π, π). Note the innovation variance is taken equal to 1.



Power AR(2) cycle model

Ha = AR(1) ω0 = .3069π; δ = .6π ω0 = .3069π; δ = .4π

sample size ψA log(ψA) ψA log(ψA)

n = 100 .985 .780 .979 .790

n = 150 .999 .907 .997 .900

n = 250 1 .983 1 .979

n = 500 1 1 1 1

Ha = ARMA(1, 1) ω0 = .3069π; δ = .6π ω0 = .3069π; δ = .4π

sample size ψA log(ψA) ψA log(ψA)

n = 100 .657 .359 .694 .370

n = 150 .823 .477 .857 .493

n = 250 .958 .657 .968 .673

n = 500 1 .884 1 .892

Table 2: Results of a Monte Carlo simulation to evaluate the power of the gof statistic ψA and its
log transformed counterpart. The simulations consisted of 10,000 replications using the nominal
α-level α = .05. Note that we used band-limited kernel A of the form 1+cos(λ), the Tukey-Hanning
kernel (TH). Additionally, in this simulation the cycle model parameters are ρ = .75, ω = .3069π
and τ2 = 1.



Oil Data Analysis

Test Statistic ψA log(ψA)

Model AR(1) AR(2) AR(3) AR(4) AR(1) AR(2) AR(3) AR(4)

A = 1(−π,π) .030 .128 .564 .827 .067 .232 .715 .622

A=TH kernel; δ = .6π < .001 < .001 .148 .700 .004 .025 .3527 .986

A=TH kernel; δ = .4π < .001 < .001 .056 .764 .003 .027 .330 .939

A=TH kernel; δ = .2π < .001 < .001 .006 .997 .004 .042 .518 .284

Table 3: This table contains the models along with the associated p−values for the Oil data analysis
described in Section 4.2. Note that we used band-limited kernel A of the form 1+cos(λ), the Tukey-
Hanning kernel (TH). Additionally, in this analysis the kernel was centered at ω0 = .3069π in all
cases where a band-limited kernel was used.


